Showing posts with label Analysis Services. Show all posts
Showing posts with label Analysis Services. Show all posts

Monday, 14 December 2015

SSAS - How to Terminate Long Running Queries

Despite how well you may design your SSAS database or how well you educate your users, in my experience eventually someone will issue queries that take way too much time to complete.  It's usually down to a user forgetting to apply a filter somewhere.  They'll likely be using a front end tool like Excel that allows them to easily drag and drop measures and attributes without too much thought, and may "accidentally" query data for all time rather than just the desired dates. If the cube is partitioned by date (eg by day or month) and contains many years of data then this query could be scanning every single partition in the measure group, leaving the user to go get a coffee while waiting for the results.

(Incidentally, if a trace reveals that more partitions than expected are being scanned than there may be an issue with the Slice property)

Different front end applications will handle this waiting time in different ways, but many will simply appear to hang or freeze.  Cue a call from an agitated user: "Every time I run my query the application dies".  This is obviously unacceptable, not to mention the less visible drain on resources it may be causing.  But what steps can we take to resolve this?

While it's important to ensure that users are aware of certain front-end best practices of querying the cube (eg apply filters before nesting dimensions), there are a number of approaches we can take to quickly resolve the problem and stop the applications hanging.

1. Identify and Kill the Query
Just like a SQL relational database, SSAS also has DMVs that provide insights into server activity, including connection information.  Run the below MDX query:

SELECT SESSION_SPID,
       SESSION_USER_NAME,
       SESSION_CURRENT_DATABASE,
       SESSION_LAST_COMMAND,
       SESSION_CPU_TIME_MS,
       SESSION_ELAPSED_TIME_MS
FROM   $system.discover_sessions

From these results, we can identify which session_id is the troublemaker.  Once identified, we can investigate further, and, if necessary, manually kill the session.  Killing the session can be done with the following XMLA command:
<Cancel xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
       <ConnectionID>[CID]</ConnectionID>
       <SessionID>[SID]</SessionID>
       <SPID>[SPID]</SPID>
</Cancel>

Note: this command can be used to kill the connection, the session or the SPID - delete as required.

Executing the above command will likely cause an error to be thrown in the users application and in some cases may require them to restart the program.  However in most circumstances this is preferable to leaving the application hanging indefinitely.

2. Dynamically Kill Long Running Queries With Scheduled Jobs
While the above method is fine if a manual intervention is required, a much slicker approach would be to automate the process.  It would be simple enough to create a SQL Agent Job or SSIS package to scan the DMVs in order to detect any queries running for longer than a predefined time.  The SPIDs could then be passed dynamically to the XMLA command and killed.  An advantage of this approach is that it allows a great deal of flexibility - for example if certain users or certain times year (eg month-end), or certain databases are known to demand the use of unavoidably long running queries, then the cut-off time for killing these sessions could vary based on those parameters. 

3. Dynamically Kill Long Running Queries using SSAS Server Properties
By far the most common approach for handling this problem is to use the SSAS server properties.  However, I have seen many occasions in which these properties are misunderstood, which is actually what inspired this post.  These properties can be accessed either by right-clicking on the SSAS server in SSMS and selecting Properties (tick the Advance box at the bottom), or they can be accessed directly in the server file msmdsrv.ini:



ExternalCommandTimeout



Often I have seen this setting used to handle this particular problem, however that is a common mistake.  This setting relates to OLAP processing performance, not query performance.  If a processing query, ie a query sent from SSAS to a source system in order to process dimensions or partitions, has not completed its execution on the source system by the threshold set by this property, then the cube process command will be forced to fail.

ServerTimeout


This is the property, towards the end of the Advanced Properties list, that is relevant for us.  Any MDX query on any OLAP database on the server that does not complete within the time set by this property will be terminated.

There's no flexibility with ServerTimeout - one setting affects all MDX queries on the server regardless of origin, destination or anything else.  99% of the time this is a sufficient and effective solution for terminating long running queries with minimal fuss.


Wednesday, 16 September 2015

SSAS - Slow Running Query? Unnecessary Partition Scans? Solve it with a Slice!

While there are many possible reasons why an MDX query of an OLAP cube may not perform as well as expected - the cube dimension hierarchies may not be optimised for best use, the MDX query itself may require optimisation etc - an often overlooked area is the measure group partition definitions and the partition Slice property.


 In a typical SSAS project I would normally design an "initial" partition inside SSDT (formerly BIDS):


I would deploy this solution and create a scheduled job to create additional partitions when necessary, depending on the partition strategy (eg every night/week/month etc).  The Create Partition xmla script might look something like this:
  
<Create xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<ParentObject>
<DatabaseID>MyDb</DatabaseID>
<CubeID>MyDb</CubeID>
<MeasureGroupID>MyMeasureGroup</MeasureGroupID>
</ParentObject>
<ObjectDefinition>
<Partition xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ddl2="http://schemas.microsoft.com/analysisservices/2003/engine/2"
xmlns:ddl2_2="http://schemas.microsoft.com/analysisservices/2003/engine/2/2"
xmlns:ddl100_100="http://schemas.microsoft.com/analysisservices/2008/engine/100/100"
xmlns:ddl200="http://schemas.microsoft.com/analysisservices/2010/engine/200"
xmlns:ddl200_200="http://schemas.microsoft.com/analysisservices/2010/engine/200/200"
xmlns:ddl300="http://schemas.microsoft.com/analysisservices/2011/engine/300"
xmlns:ddl300_300="http://schemas.microsoft.com/analysisservices/2011/engine/300/300"
xmlns:ddl400="http://schemas.microsoft.com/analysisservices/2012/engine/400"
xmlns:ddl400_400="http://schemas.microsoft.com/analysisservices/2012/engine/400/400">
<ID>20150102</ID>
<Name>20150102</Name>
<Source xsi:type="QueryBinding">
<DataSourceID>MyDs</DataSourceID>
<QueryDefinition>SELECT * FROM MyTable WHERE MyDate = 20150102</QueryDefinition>
</Source>
<StorageMode>Molap</StorageMode>
<ProcessingMode>Regular</ProcessingMode>
<ProactiveCaching>
<SilenceInterval>-PT1S</SilenceInterval>
<Latency>-PT1S</Latency>
<SilenceOverrideInterval>-PT1S</SilenceOverrideInterval>
<ForceRebuildInterval>-PT1S</ForceRebuildInterval>
<Source xsi:type="ProactiveCachingInheritedBinding" />
</ProactiveCaching>
<EstimatedRows>5000000</EstimatedRows>
<AggregationDesignID>AggregationDesign</AggregationDesignID>
</Partition>
</ObjectDefinition>
</Create>

Once deployed and processed, this solution may work well. Users find the cube responsive and fast.  Over time, however, users start to complain that the same daily query/report that used to run almost instantaneously is now painfully slow.  No design changes have been deployed, no hardware modifications have been made - nothing has been altered.  So how is it that the same query now takes significantly longer?

An often overlooked area is the slice setting for partitions.  As an example of what can happen, let's look at the AdventureWorks cube from the SQL 2012 samples (available here http://msftdbprodsamples.codeplex.com/releases/view/55330).

A good starting point for debugging queries is often to run a SQL Profiler trace on the SSAS database and see what's happening when this query is executed.  Let's take a simple query:

SELECT [Measures].[Internet Sales Amount] ON 0,
[Geography].[City].
Members ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Date].&[20080607]

This will return the "Internet Sales Amount" measure by City on 7th June 2008.  If we use the Object Browser in Management Studio to examine the Internet Sales measure group we see this:


  
The measure group contains four partitions, one for each year.  Therefore we would expect that our query above should only hit the one single partition, Internet_Sales_2008.  Let's confirm by viewing the SQL Profiler trace results:


The trace shows that SSAS is actually scanning three partitions, not one - 2005, 2006 and 2008.  But we know the result set lies only in 2008, so why this extra scanning?  We may want to confirm that the results are only going to be in the 2008 partition by examining the partition query - the SQL query used as the source for the partition data.  In this case it's been checked and they are all set up with the correct queries and WHERE clauses. 

The reason for the extra partition scans is down to the Slice property of the partition not being set.  The slice property is used by SSAS to determine which partition(s) contains the desired data.  If SSAS knows up front where the data lies it can avoid wasting time and resources scanning partitions that will not return any data. Let's take a look at the properties of one of the partitions in SSMS:


We can see here that the Slice property is blank.  When left blank, SSAS uses it's own default method of determining which partitions may contain the data.  While this may sometimes be sufficient, the trace above shows it is hardly foolproof.  Far better to actually set this property to the value we know to be valid, enabling the SSAS engine to quickly be directed to partition containing the results.

Valid values for a slice property are an MDX member, set or tuple.  In this example the slices should be set to the relevant year, eg:

[Date].[Calendar Year].&[2008]

If we now set this for each of the partitions and rerun the same query we see the following in the trace file:


The engine is going directly to the correct partition and ignoring all others.  The result is a much faster running query.  I have seen examples where there were 100+ partitions, all without the slice set.  The result was that queries were taking up to 30 seconds to complete.  On setting the slices appropriately, query time reduced to around 1 second.

Note that we can set the slice either via properties in SSDT at design time, in SSMS properties post deployment, or better yet, in the original XMLA we used at the start of this post to automatically create the partitions on a schedule:

…<StorageMode>Molap</StorageMode>
<
ProcessingMode>Regular</ProcessingMode>
<
Slice>[Date].[Calendar Year].&amp;[2008]</Slice>
<ProactiveCaching>….

So the lesson is: Always set the Slice property :)


Saturday, 25 April 2015

SSAS 2012 Remove Zeros Using NullProcessing and Improve Query Times

In Analysis Services optimal query response times is key to a successful project.  The cube may contain all sorts of clever logic, processing times may be lightning fast, but if users are having to wait on long running queries each time they access the SSAS database they will soon tire of using it.


As fact and dimension tables grow over time, query performance can slow down.  There are many techniques for improving query performance - good partition design for measure groups, implementing natural hierarchies for dimensions etc.  However, there are also other techniques that often get overlooked.  One such technique is to look at the source data and decide if it is really necessary to import it into the cube. A smaller cube will generally outperform a larger one (all other factors being equal).

I recently worked on an SSAS database with a dimension that had grown to contain over 30 million members at the leaf level.   For any given day a subset of these members would be used - around fifty thousand would actually have data in the cube, and this was massively impacting query performance time for users – around 3 minutes were required to complete the query.

On examining the data returned by the SSAS queries, most of the measure values for these members was zero.  Only a few hundred records per day contained non-zero values.  In the source system relational tables the values were null, but in the cube they were displayed as zero.  As a result, to resolve the cube queries SSAS was having to read and aggregate all these zero values when in actual fact they were of no interest to the users.   If these zeros could be removed we could eliminate a huge chunk of data from the cube and reduce the overhead of processing, reading and returning all that unnecessary data.  

It may seem odd that the cube would convert null values in the source tables into zero's in the cube, but the key to this behaviour lies in the NullProcessing property.  As a simple example, let’s first create some dimension and fact data:

CREATE TABLE dimCustomer (custId int, CustName VARCHAR(25), CustCountry VARCHAR(25))
CREATE TABLE dimDate (DateId INT, CalendarDate DATE )
CREATE TABLE factMeasures (dimCustId INT, dimDateId INT, Sales INT, )

INSERT INTO dimCustomer
SELECT 1, 'Dave', 'England' UNION ALL
SELECT 2, 'Bob', 'Scotland' UNION ALL
SELECT 3, 'Jenny', 'Ireland' UNION ALL
SELECT 4, 'Jill', 'Scotland' UNION ALL
SELECT 5, 'Donny', 'Ireland'


DELCARE @t SMALLDATETIME= GETDATE()
INSERT INTO dimDate
SELECT CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT),CAST(@t-1 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT),CAST(@t-2 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-3, 112) AS INT),CAST(@t-3 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-4, 112) AS INT),CAST(@t-4 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-5, 112) AS INT),CAST(@t-5 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-6, 112) AS INT),CAST(@t-6 AS DATE) UNION ALL
SELECT CAST(CONVERT( VARCHAR(12), @t-7, 112) AS INT),CAST(@t-7 AS DATE)

INSERT INTO factMeasures
SELECT 1, CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT), 10 UNION ALL
SELECT 1, CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT), 20 UNION ALL
SELECT 1, CAST(CONVERT( VARCHAR(12), @t-3, 112) AS INT), 20 UNION ALL
SELECT 2, CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT), 30 UNION ALL
SELECT 2, CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT), 50 UNION ALL
SELECT 3, CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT), NULL UNION ALL
SELECT 3, CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT), NULL UNION ALL
SELECT 3, CAST(CONVERT( VARCHAR(12), @t-3, 112) AS INT), NULL UNION ALL
SELECT 3, CAST(CONVERT( VARCHAR(12), @t-4, 112) AS INT), NULL UNION ALL
SELECT 4, CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT), 10 UNION ALL
SELECT 4, CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT), NULL UNION ALL
SELECT 4, CAST(CONVERT( VARCHAR(12), @t-3, 112) AS INT), NULL UNION ALL
SELECT 5, CAST(CONVERT( VARCHAR(12), @t-1, 112) AS INT), NULL UNION ALL
SELECT 5, CAST(CONVERT( VARCHAR(12), @t-2, 112) AS INT), NULL UNION ALL
SELECT 5, CAST(CONVERT( VARCHAR(12), @t-3, 112) AS INT), NULL UNION ALL
SELECT 5, CAST(CONVERT( VARCHAR(12), @t-4, 112) AS INT), NULL

SELECT * FROM factMeasures




As the results show, we now have a simple schema with a fact table containing Sales values.  Note that for CustID 5, Donny, all values are null.

Next let’s build a simple SQL Server Analysis Server 2012 cube on top of this schema, using SQL Server Data Tools (SSDT).  The cube design looks like this:



After deploying and processing the cube, we’re now ready to browse the data by customer and date:



Note that Donny is listed with 4 days of data, with a sales value of zero.  The source system showed nulls, but the cube has converted that to zeros, in effect creating values where none existed.  In our example we would prefer that these cells in the cube are empty.  There may be a need to have the record in the source system, e.g. while this measure column for this row in the source table is null,  there may be an additional measure column for which there are valid figures for Donny. However, at present a NON EMPTY query will return these zeros, when we would expect Donny not to be listed at all.

To change this behaviour to that desired we need to examine the NullProcessing property for the measure. In SSDT open the Cube and go to the Cube Structure tab.  In the measures list on the left select the relevant measure and open the properties window (F4).  At the bottom of the list of properties expand the Source property:



By default the NullProcessing is set to Automatic,  which rather ambiguously means the Analysis Services server decides what to do.  Changing the NullProcessing setting to Preserve, will preserve the nulls from the source data.  Using the above example, setting this to Preserve and reprocessing produces the following results for the same query as before:





Donny no longer appears in the list, and the results have reduced from 48 cells to 18.  Although not apparent on such a small dataset, in the original example of 50k records taking 3 mins to return, applying the NullProcessing changes reduced query time to less than 5 seconds to return only a few hundred rows.





Tuesday, 8 October 2013

SSAS: MDX True Average VS AverageOfChildren

Recently I was tasked with working on some slow performing calculations in a cube.  In the Calculation script a developer had used the DECENDANTS function, with the LEAVES flag to navigate all the way down to the bottom of several dimensions' hierarchies. He had then used AVG across the returned set for a specified measure, effectively aggregating all the way back up again.

All the developer actually wanted to do was to have a measure that returned the average value for the current member selection.  By going down to the leaf level and then backup, however, the cube is having to scan through a potentially huge volume of data to produce the answer. Inevitably this will result in degraded query performance for users.

In fact this can be a lot simpler to do than people realise.  True, SSAS 2008R2 still does not supply an inbuilt function to do this, which surprises many new users. One day maybe it will,  but in the meantime here is how I do it.

First, it should be pointed out that there is a certain "type" of averaging that SSAS does support out of the box.  If you look at the options in the AggregationFunction property for a measure you will see that, although by default set to Sum, there is also one option called AverageOfChildren. This name is very misleading.  It is not a true average as I would understand.  It is actually an average only across the Time dimension.  If you have two dates selected and are looking at the Sales Value measure you will see it averaged across those two days.  However, if you are looking at a single day, but across two sales areas, you will not see it averaged across those areas, but summed.  Confusing, but that is just what it does. Note that to enable this correctly your time dimension needs to have its Type property set to Time

If, however, you want to do a true average, you will need to create a calculated member in the calculations tab of your cube.  The calculation is very simple, for what is an average? It is the sum of the values, divided by the number of values.  The sum we have as the base measure from the fact table, say Sales Value. When we create a new measure group in the cube it automatically generates a new measure suffixed "Count".  This measure is none other than the count of values (or fact table rows) in the measure group.

Therefore the average calculation is the one measure divided by the other:

CREATE MEMBER CURRENTCUBE.[Measures].AvgSales
AS Measures.Sales / [Measures].[SalesFactCount]

Since both measures are essentially straight from the fact table, their values are stored during processing time, and benefit from aggregation design too.  As a result the AvgSales measure ought to perform very fast.




Friday, 27 September 2013

SSAS 2008: Clear Cache Command

When testing query perfornance on an SSAS database it's important to know if you are starting from a warm or clear cache.  The simplest way to clear the cache is through an XMLA command, run from SSMS:

<ClearCache xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<Object>
<DatabaseID>MyDatabase</DatabaseID>
</Object>
</ClearCache>

This clears the cache for the entire database. You can also clear the cache just for a specific cube:

<ClearCache xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<Object>
<DatabaseID>MyDatabase</DatabaseID>
<CubeID>MyCube</CubeID>
</Object>
</ClearCache>

Monday, 9 September 2013

SSAS: Performance of MDX SCOPE() statement

Further to my recent posts on using SCOPE() statements in a cube and potential issues in using the SCOPE() statement, I came across another issue last week.

In a cube I was developing I had used a SCOPE() statement to ensure that when a particular measure was selected, the dimension member used (for one particular dimension) would be the datamember, so that the measure value displayed would be the "fact table" value and not the aggregated value of the children. (for more on using the DATAMEMBER function see this post).

In the calculation tab of the cube editor I wrote the following:

SCOPE([Measures].[MyMeasure]); THIS=[Portfolio].[Portfolio Name].CURRENTMEMBER.DATAMEMBER; END SCOPE;

However, in user testing accross large volumes of data this measure performed very slowly, taking over a minute to return results.

I tried experimenting with different approaches, and found that the desired results could be achieved without using the scope statement.  A calculated measure can be used, that contains the datamember function in its logic:
CREATE MEMBER CURRENTCUBE.[Measures].[MyMeasure2]
AS ([Measures].[MyMeasure,[Portfolio].[Portfolio Name].DATAMEMBER), VISIBLE = 1 ;

This measure produced the same result set but surprisingly the response time reduced to around ten seconds.

If anyone has had a similar experience and has explanation why using the DATAMEMBER function in a calculated measure rather than a SCOPE statement should perform faster please leave a comment and let me know!